
Observables

April 1, 2015

Carsten Burgard

Introduction

Booking Histograms

nTuples and xAODs

State of the Art

Above and Beyond

Dos & Don’ts

Observables

tree

⋮

x1 x2 x3 x4 . . .

⋮

histogram input

cut value

event weight

. . .

▸ observables are identified by their expression

▸ expressions can be arithmetic expressions, but also names

▸ observables can be obtained and created by
TQObservable::getObservable

▸ can also manually add observables to the list with
TQObservable::addObservable

2/34

Introduction

Booking Histograms

nTuples and xAODs

State of the Art

Above and Beyond

Dos & Don’ts

Observables

tree

⋮

x1 x2 x3 x4 . . .

⋮

histogram input

cut value

event weight

. . .

observable list

observable1

observable2

observable3

. . .

▸ observables are identified by their expression

▸ expressions can be arithmetic expressions, but also names

▸ observables can be obtained and created by
TQObservable::getObservable

▸ can also manually add observables to the list with
TQObservable::addObservable

2/34

Introduction

Booking Histograms

nTuples and xAODs

State of the Art

Above and Beyond

Dos & Don’ts

Histogramming

Run 1

TH1F(’Mll ’, ’’, 60, 0., 120.) << (Mll /1000 : ’m_{ll} [GeV]’);

Run 2

TH1F(’Mll ’, ’’, 60, 0., 120.) << (HMMCands [0]. constituent (0).m() /1000 : ’m_{ll} [GeV]’);

▸ all that changed is this:
Mll → HMMCands[0].constituent(0).m()

▸ what does this mean?

3/34

Introduction

Booking Histograms

nTuples and xAODs

State of the Art

Above and Beyond

Dos & Don’ts

Flatness and Complexity

Flat nTuple (TTree)

▸ branch1 (float)

▸ branch2 (float)

▸ branch3 (int)

▸ . . .

▸ Mll (float)

▸ . . .

xAOD (TTree)

▸ branch1 (TruthParticleContainer)

▸ branch2 (IParticleContainer)

▸ branch3 (MyCustomObjContainer)

▸ . . .

▸ HMMCands (IParticleContainer)

▸ . . .

4/34

Introduction

Booking Histograms

nTuples and xAODs

State of the Art

Above and Beyond

Dos & Don’ts

Complexity and m``

HMMCands[0].constituent(0).m()

▸ HMMCands[0] is a Higgs candidate, an object of type
IParticle, subtype CompositeParticle

▸ composite particles have constituents, which are also of
type IParticle

▸ they can be accessed with the member function
CompositeParticle::constituent(int n)

▸ the argument n is the index of the constituent
▸ HMMCands[0].constituent(0) is also a
CompositeParticle: the dilepton object

▸ IParticles (and thus also CompositeParticle) have
non-argument member function m() to access the mass

▸ thus, HMMCands[0].constituent(0).m() is m``

5/34

Introduction

Booking Histograms

nTuples and xAODs

State of the Art

Above and Beyond

Dos & Don’ts

High hopes

▸ xAOD EDM objects can have arbitrary member functions

▸ ask the leading electron in H →WW → 2e2ν candidates
if it passes the Loose selection:
HEECands[0].constituent(0).electron(0).passSelection("Loose")

It’s wonderful, isn’t it?

6/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Histogramming

▸ we start by calling
TQHistoMakerAnalysisJob::importJobsFromTextFiles

on our file

TQHistoMakerAnalysisJob::importJobsFromTextFiles

▸ read in your text file line by line

▸ create a TQHistoMakerAnalysisJob for you

▸ book each single histogram you requested calling
TQHistoMakerAnalysisJob::bookHistogram

▸ we have created a histogram job

▸ we will now see how histogram booking works

7/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Booking Histograms

▸ a histogram booking has been requested

TQHistoMakerAnalysisJob::bookHistogram

▸ read the definition, the expression and the title
TH1F(’Mll’, ’’, 60, 0., 120.) << (Mll : ’m ll [GeV]’);

▸ request a TQObservable for this expression calling
TQObservable::getObservable

▸ histogram jobs don’t know about trees or data

▸ all data retrieval is done by observables

▸ we will now see how they work

8/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Retrieving Observables

▸ an observable has been requested

TQObservable::getObservable("Mll/1000.")

▸ recognize that this is a formula-like expression

▸ convert it into a name (no slashes: "Mll:1000.)

▸ check the global list of observables if there already is an
observable with matching name

▸ if a match is found, return it

▸ otherwise, create one by creating a
TQTreeFormulaObservable (special type of
TQObservable) with this name and expression

9/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

TQTreeFormulaObservable

TQTreeFormulaObservable members:

▸ fTree (TTree*): , pointer to tree

▸ fExpression (TString): constructor argument

▸ fFormula (TTreeFormula): ROOT class, needs fTree

and fTree. does all the hard work.

TQTreeFormulaObservable methods:

▸ initializeSelf: for each sample, create fFormula

▸ getValue: on each event, return fFormula->Eval

▸ finalizeSelf: after finishing, delete the fFormula

10/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Problems

▸ constructor of TTreeFormula is called with arguments
3 Mll

3 HEECands[0].constituent(0).m()

7 HEECands[0].constituent(0).electron(0).passSelection("Loose")

▸ TTreeFormula was never designed to do any of this:

3 handle branches that are objects (not simple data types)
3 call methods of these objects
3 pass arguments these methods
7 create other objects on-the-fly to pass them to these

methods as arguments

▸ rewrite of TTreeFormula along with ROOT6 upcoming

▸ will be too late for first Run 2 data (Fall ’15 earliest)

11/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Examples

3 HEECands[0].constituent(0).m()

▸ branch is of object type,object methods are called
▸ only integers are passed to these methods as arguments

7 HEECands[0].constituent(0).electron(0).passSelection("Loose")

▸ a string (object-type) is passed as an argument

7 HEECands[0].deltaPhi({1,2})

▸ a list (object-type, C++11 syntax) is passed

3 HEECands[0].deltaPhi(1,2)

▸ only two integers are passed as arguments

? HEECands[0].deltaPhi(HEECands[0].constituent(0),HEECands[1].constituent(1))

▸ pointers to objects are passed as arguments

12/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Status of the Problem

▸ some types of data cannot be accessed with
TTreeFormula

▸ in some cases, hacky workarounds might exist

▸ in general, a clean method of accessing tree data is
required

Reminder: TQObservables

▸ TTreeFormula is the access method used by
TQTreeFormulaObservable

▸ this is only one type of TQObservable, others exist

▸ we will now get to know them

13/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

TQTreeFormulaObservable

characteristic evaluates a TTreeFormula on every event

purpose bread-and-butter physics

complexity low

usage default observable type, used unless specified
otherwise

14/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

TQConstObservable

characteristic returns the same value for every event in a
sample

purpose performance gain for trivial conditions like
1 == 1

complexity trivial

usage is automatically used for expressions that don’t
contain any letters, e. g. 1+1 == 2

15/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

TQMVAObservable

characteristic retrieves data from an instance of TMVA

purpose on-the-fly evaluation of BDTs etc.

complexity high

usage automatically used for expressions that contain
the string “weights.xml”. the expression used as
a filename to read the TMVA configuration from.

16/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

TQMultiObservable

characteristic retrieves data from other observables (not from
the tree)

purpose allows for more complex calculatons

complexity medium

usage is automatically used for expressions that
contain names enclosed in brackets, e. g.
[myMVAweights.xml] > 0.5

but not
HMMCands[0]

17/34

Introduction

State of the Art

Understand the Process

Understand the Issues

Observable Types

Status Summary

Above and Beyond

Dos & Don’ts

Summary

▸ we need observabless to retrieve data from the samples
for histograms, cuts, and everything else

▸ neither of the pre-existing observable types supports the
full list of xAOD features

▸ only the TQTreeFormulaObservable actually retrieves
data from the tree

18/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Your new Observable type

What is an observable?

▸ a class inheriting from TQObservable

▸ that implements a method getValue

▸ that returns a value for every event

What can observables do?

▸ access any data from the tree

▸ execute any code you choose to write

19/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Creating your observable

Write your class

▸ create MyObservable.cxx and MyObservable.h

▸ have your class inherit from TQObservable

▸ implement getValue

▸ create an instance of your class
myObs = MyObservable()

▸ append your observable to the list and assign a name
TQObservable::addObservable(myObs,"XYZ")

▸ use it in your histogram or cut definition files
TH1F(’xyz, ’’, 60, 0., 120.) << (XYZ : ’My Observable’);

20/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Access Mechanisms

For your code, you can use various access mechanisms:

▸ TTreeFormula – useless

Pro easy to use
Con not feature-complete, hence pointless

▸ TTree::SetBranchAddress – discouraged

Pro easy to use, well known, highly performant
Con address ownership is not tracked, different

observables trying to access the same
branch will interfere

▸ xAOD::TEvent – recommended

Pro highly performant, feature-complete
Con requires custom coding, (currently) no way

to autocreate from text files
21/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Inherit from one of three base types

TQEventObservable uses xAOD::TEvent
▸ officially recommended
▸ works on xAOD only
▸ example: TQTreeFormulaObservable

TQTreeObservable uses TTree
▸ use for any standard-ROOT mechanism
▸ works well on flat nTuples
▸ does not support all xAOD features

TQObservable no predefined mechanism. useful if you
▸ use other observables as input. ex.:
TQMVAObservable, TQMultiObservable

▸ read data from separate files
▸ use randomly generated numbers
▸ use constant values. ex.: TQConstObservable
▸ . . .

22/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Inheritance structure

TQObservable

other fancy observ-
able types without
direct data access

TQMultiObservable

TQMVAObservable

TQEventObservable
observable using
xAOD::TEvent

TQTreeObservable
observable using

TTree::SetBranchAddress

TQTreeFormulaObservable

23/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

xAODs: Truth uncovered

What you think

▸ branch1 (TruthParticleContainer)

▸ branch2 (IParticleContainer)

▸ branch3 (MyCustomObjContainer)

▸ . . .

How it is

▸ branch1Aux.e (float)

▸ branch1Aux.px (float)

▸ branch1Aux.py (float)

▸ branch1Aux.pz (float)

▸ branch2Aux.e (float)

▸ . . .

▸ how do we get from right to left?

▸ how do we actually get class-type objects in branches?

24/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

xAODs: How it works

xAOD.root

CollectionTree

ROOT Memory

xAOD::TEvent

transient tree

Your Code

TTree::SetBranchAddress

xAO
D::

TEv
ent

::r
etr

iev
e

x
A
O
D
:
:
M
a
k
e
T
r
a
n
s
i
e
n
t
T
r
e
e

TTreeFormula
TTree::SetBranchAddress

▸ inherit from TQTreeObservable to access transient tree

▸ inherit from TQEventObservable to access xAOD::TEvent

25/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Writing a TQEventObservable

▸ inherit from TQEventObservable

▸ implement MyObservable::getValue

▸ use xAOD::TEvent::retrieve to access data

▸ return your result

class MyObservable : public TQEventObservable{

protected:

mutable xAOD:: CompositeParticleContainer const * mCand = 0;

4 public:

double MyObservable :: getValue () const override {

if(!this ->fEvent ->retrieve(this ->mCand , "EECands"). isSuccess ()) return 0;

const xAOD:: CompositeParticle* p = this ->mCand ->at(0);

return p->electron (0)-> passSelection("Loose");

9 }

};

26/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Writing a TQTreeObservable

▸ inherit from TQTreeObservable
▸ implement getValue, initializeSelf,
finalizeSelf and getBranchNames

▸ use TTreeFormula to retrieve data
class MyObservable : public TQTreeObservable{

protected:

TTreeFormula* fFormula = 0;

public:

5 bool MyObservable :: initializeSelf () override {

this ->fFormula = new TTreeFormula("EECands.constituent (0).m()",this ->fTree);

return true;

}

bool MyObservable :: finalizeSelf () override {

10 delete this ->fFormula;

return true;

}

double MyObservable :: getValue () const override {

return this ->fFormula ->Eval (0.);

15 }

TObjArray * getBranchNames(TQSample *s) const override {

TObjArray* retval = new TObjArray ();

retval ->Add(new TObjString("EECands"));

return retval;

20 }

}; 27/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Writing a TQTreeObservable

▸ inherit from TQTreeObservable

▸ implement getValue, initializeSelf,
finalizeSelf and getBranchNames

▸ use TTree::SetBranchAddress to retrieve data
class MyObservable : public TQTreeObservable{

protected:

mutable xAOD:: CompositeParticleContainer const * mCand = 0;

4 public:

bool MyObservable :: initializeSelf () override {

this ->fTree ->SetBranchAddress("EECands" ,&(this ->mCand)); // please don ’t do this

return true;

}

9 bool MyObservable :: finalizeSelf () override {

return true;

}

double MyObservable :: getValue () const override {

return this ->mCand ->constituent (0)->m();

14 }

TObjArray * getBranchNames(TQSample *s) const override {

TObjArray* retval = new TObjArray ();

retval ->Add(new TObjString("EECands"));

return retval;

19 }

};

28/34

Introduction

State of the Art

Above and Beyond

Overview

Coding Guide

TEvent

TQEventObservable

TQTreeObservable

wizard.py

Dos & Don’ts

Copy & paste, search & replace

▸ you can copy & paste many features from existing
observables or this talk

▸ but you don’t have to!

QFramework/share/templates/TQObservable/wizard.py

▸ semi-intelligent wizard will guide you through the process
of writing your observable

▸ will provide you with commented templates for all three
observables types

▸ will automatically create LinkDef entries & move your
files to the correct location

29/34

Introduction

State of the Art

Above and Beyond

Dos & Don’ts

Coding

Usage

TQEventObservable

3 Check the return value of xAOD::TEvent::retrieve
if(!this->fEvent->retrieve(this->mCand,

"EECands").isSuccess()) return 0;

7 Forgetting to do this will produce warnings about
unchecked return codes!

3 optimize implementation of getValue – it will be called
multiple times per event!

3 use the keywords const and override – they help you
avoid bugs!

30/34

Introduction

State of the Art

Above and Beyond

Dos & Don’ts

Coding

Usage

TQTreeObservable

3 feel free to use TTreeFormula whenever applicable

3 create all transient data members in initializeSelf

7 don’t forget to undo what you did in finalizeSelf.
forgetting to delete members here will produce memory
leaks!

7 please don’t use TTree::SetBranchAddress, unless
you are very sure that nobody else will ever use the
same branch!

31/34

Introduction

State of the Art

Above and Beyond

Dos & Don’ts

Coding

Usage

Caution: Observables are not branches!

7 TH1F(’xyz, ’’, 60, 0., 120.) << (XYZ/1000. : ’My Observable’);

▸ your observable name is “XYZ”, not “XYZ/1000.”
▸ here, the framework will fail to find your observable and

try to build a TQTreeFormulaObservable instead
▸ this in turn will fail to find a branch named ”XYZ” and

produce error messages

3 TH1F(’xyz, ’’, 60, 0., 120.) << ([XYZ]/1000. : ’My Observable’);

▸ the brackets will trigger the creation of a
TQMultiObservable

▸ that in turn will ask for your observable, find it, evaluate
it, and evaluate the expression using its output

32/34

Introduction

State of the Art

Above and Beyond

Dos & Don’ts

Coding

Usage

Caution: Observables are not branches!

7 TH1F(’xyz, ’’, 60, 0., 120.) << ([XYZ]/1000.+lepPt1 : ’My Observable’);

▸ the brackets will trigger the creation of a
TQMultiObservable

▸ but this one only knows how to handle observables, not
branches

▸ you will get error messages complaining about invalid
numerical expressions

3 TH1F(’xyz, ’’, 60, 0., 120.) << ([XYZ]/1000.+[lepPt1] : ’My Observable’);

▸ the brackets will trigger the creation of a
TQMultiObservable

▸ this will work on two observables, named “XYZ” and
“lepPt1”.

▸ the first of these two will be your predefined observable
▸ the second one will be created as a
TQTreeFormulaObservable

33/34

Introduction

State of the Art

Above and Beyond

Dos & Don’ts

Coding

Usage

Summary

▸ the CAF is a powerful framework. it can do almost
anything – if you know how!

▸ xAODs provide a convenient data model – but some
features are still missing

▸ we can compensate this by writing customized
observables accessing the xAOD content

▸ don’t be afraid to write your own observable class – it’s
easy and useful

▸ don’t hesitate to contact me for remaining questions or
ask for help

34/34

	Introduction
	Booking Histograms
	nTuples and xAODs

	State of the Art
	Understand the Process
	Understand the Issues
	Observable Types
	Status Summary

	Above and Beyond
	Overview
	Coding Guide
	TEvent
	TQEventObservable
	TQTreeObservable
	wizard.py

	Dos & Don'ts
	Coding
	Usage

