

Tips of VBF analysis in CAF

Pai-hsien Jennifer Hsu Johannes Gutenberg-Universität, Mainz, Germany

VBF CAF Cheat Sheet

• To reproduce Moriond VBF analysis, set the following flags to "true" in CAF:

(In Read*config:) doVBFStyle applyVBFSFcorr useVBFSFABCD

(In Run*config) doVBFSF

(In both configs) doVBFZttCF

VBF CAF Cheat Sheet

- (In Run*config) Use the following cut definition files HWWAnalysis.cutDefinitions: definitions/HWW_Cuts_2012.txt,definitions/HWW_Cuts_2012_VBFTopZCR.txt
- For more information, search these options in Run*cxx for VBF-related blocks of codes.
- Today I will walk you through these options.

doVBFStyle

- This is the "fundamental" flag that sets up the VBF analysis.
 - → Print 2-jet cutflows
 - → Separate VBF+VH and ggF
 - → Add ggF to total bkg (in NF calculations too!)
 - \rightarrow Separate $Z \rightarrow ee/\mu\mu$ and $Z \rightarrow \tau\tau$ (more later)

doVBFSF

- This is needed for running over same flavor channels.
 - → Automatically add the file HWW_Cuts_2012_VBFSFCorr.txt into cut definitions.
 - → Include Sherpa EW Z+jets samples to a different sample folder "ZjetsEW"
 - → Generalize histograms at the level of Zjets/*/ee (mm,tt) instead of Zjets/, due to different treatment of Z NF's (more later).

Interlude: NF's in VBF

Applying NF's

- There are three kinds of NF's used in VBF: SF Z/DY NF's (applied on $Z \rightarrow ee/\mu\mu$), $Z \rightarrow \tau\tau$ NF and "Correction Factor" (CF), and Top NF's.
- They are calculated in the following order:
 - 1) SF Z/DY NF's and $Z \rightarrow \tau\tau$ CF (derived from SF Z CR's)
 - 2) Top NF from Top CR (including NF/CF's from 1))
 - 3) $Z \rightarrow \tau\tau$ NF from $Z \rightarrow \tau\tau$ CR (with Top NF applied).

SF Z/DY NF's

- The background used in the calculation is defined as $Alpgen Z \rightarrow ee/\mu\mu$ contribution in SF channel ("Z_eemm_path" in Run*cxx), and therefore only applied on these processes.
- In other words, no Sherpa EW Zjets and $Z \rightarrow \tau\tau$ involved.
- Reasons:
 - 1) The (MET) mis-modeling is known in Alpgen
 - 2) $Z \rightarrow \tau\tau$ contributes to ~25% bkg in SF in VBF. Correct $Z \rightarrow \tau\tau$ separately.

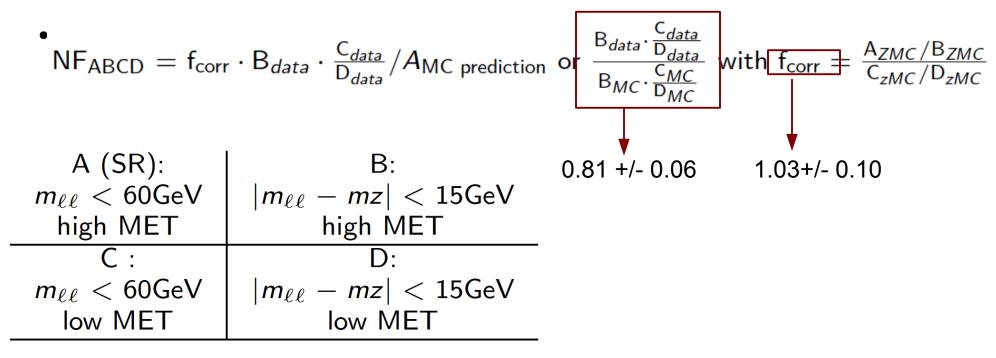
SF Z/DY NF's

- We correct for two sources of mis-modeling: MET and VBF cuts.
- Two Z (+ 2-jet) CR's: Z-peak Z CR and inverted-MET Z CR (MET<45 GeV and MET_STVF<35 GeV).
- Derive MET NF in the Z-peak Z CR. Applied in SR until the Mll<60 GeV cut. This NF = 0.77 + -0.01 from 20.7 fb-1
 - \rightarrow For Mll<60 GeV and $\Delta\Phi$ ll<1.8, use ABCD method (next slide).
- Derive VBF cut efficiency "correction factor" (CF) in the inverted-MET Z CR.
 - → CF = NF_cut/NF_MET applied at each cut in SR.
 - → For Top CR, using the same procedure with exact 1-btag in Z CR.

SF Z/DY NF's: The ABCD method

• Baseline selection: 2-jet, b-veto, Pttot<45 GeV, and Mjj>500 GeV (due to correlation between Mjj and MET).

$$\mathsf{NF}_{\mathsf{ABCD}} = \mathsf{f}_{\mathsf{corr}} \cdot \mathsf{B}_{\mathit{data}} \cdot \frac{\mathsf{C}_{\mathit{data}}}{\mathsf{D}_{\mathit{data}}} / \mathsf{A}_{\mathsf{MC}} \ \mathsf{prediction} \ \mathsf{or} \ \frac{\mathsf{B}_{\mathit{data}} \cdot \frac{\mathsf{C}_{\mathit{data}}}{\mathsf{D}_{\mathit{data}}}}{\mathsf{B}_{\mathit{MC}} \cdot \frac{\mathsf{C}_{\mathit{MC}}}{\mathsf{D}_{\mathit{MC}}}} \ \mathsf{with} \ \mathsf{f}_{\mathsf{corr}} = \frac{\mathsf{A}_{\mathit{ZMC}} / \mathsf{B}_{\mathit{ZMC}}}{\mathsf{C}_{\mathit{zMC}} / \mathsf{D}_{\mathit{zMC}}}$$


A (SR):	B:
$m_{\ell\ell} < 60 { m GeV}$	$ m_{\ell\ell}-mz <15{\sf GeV}$
high MET	high MET
C :	D:
$m_{\ell\ell} < 60 { m GeV}$	$ m_{\ell\ell}-m_Z < 15{\sf GeV}$

Z/DY NF's: The ABCD method

• Baseline selection: 2-jet, b-veto, Pttot<45 GeV, and Mjj>500 GeV (due to correlation between Mjj and MET).

$Z \rightarrow \tau \tau$

- Two factors used in $Z \rightarrow \tau\tau$ correction, in *both* SF and DF.
 - 1) $Z \rightarrow \tau\tau$ NF derived from $Z \rightarrow \tau\tau$ CR (b-veto, Pttot, Mll<80 GeV and $\Delta\phi$ _ll>2.8, with Top NF at Pttot cut applied. *DF only*.)
 - 2) $Z \rightarrow \tau\tau$ Correction Factor ("CF") for VBF cuts (DYjj/Mjj/CJV/OLV): $CF = NF_cut/NF_Pttot$
 - using SF Z-peak CR (most $Z \rightarrow \tau\tau$ bkg comes from "Z-peak")
 - the low-MET Z CR is used for systematics

Back to CAF: How to get Z NF's?

SF Z/DY NF's

• (In Read*config)

Set applyVBFSFcorr to true: VBF cut CF from low-MET Z CR Set useVBFSFABCD to true: MET correction w/ ABCD method

doVBFZttCF

- (In Run* and Read*config)
 Set doVBFZttCF to true: calculate the default and systematic
 Ztautau CF from SF Z CR's.
- Will print both values when producing cutflows:

HWWAnalysisCode 2012: Ztautau(incl)2jet CF for SR and Top CR from SF Z CR = ...

 \rightarrow The value from Z-peak Z CR. Applied in Top CR and SR.

HWWAnalysisCode 2012: Ztautau(incl)2jet CF for SR and Top CR from Alternative SF Z CR = ...

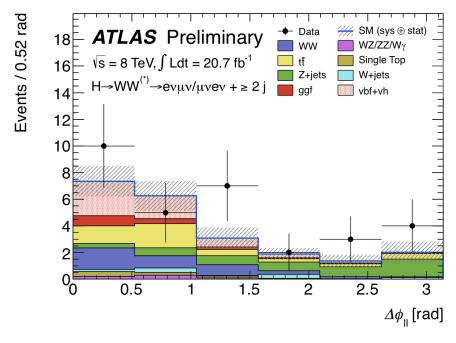
 \rightarrow The value from low-MET Z CR.

doVBFZttCF

- Must include ee/mm channels.
- If set to false, use the hard-coded value 1.297 from HCP.

Outlook

- One remark: Currently the $Z \to ee/\mu\mu$ and $Z \to \tau\tau$ are corrected separately in SF (e.g. bkg/ee/Zjets/?/?/tt). In DF $Z \to \tau\tau$ NF/CF are applied on all (Alpgen) Zjets (e.g. bkg/em/Zjets).
 - \rightarrow Negligible Z \rightarrow ee/µµ MC predictions in DF.
 - → May still modify DF for consistency.
- The Moriond procedure is bound to modified with the improvements foreseen. Your involvement is welcome!


Backup

Other tips

• Other tips: Comment out most 0/1-jet cut definitions for faster running; doPlots to false for only cutflows; changes made in signal stack.

