HWWAnalysisCode

Tutorial Sessions

Session 2/2
Running on ntuples

Andreas Walz
andreas.walz@cern.ch

Albert-Ludwigs-Universitat Freiburg

UNI

2012-05-11

FREIBURG

mailto:andreas.walz@cern.ch
mailto:andreas.walz@cern.ch

Recap: Structure of the library

Running analysis (producing Management and presentation of
analysis results, histograms, ...) analysis results (histograms, ...)

TOCutflowAnalysisdJob,
TOHistoMakerAnalysisJob,

TOCutflow-
Printer

TOAnalysisJob

TQAnalysisSampleVisitor
TQCompiledCut, TQCutFactory

TOSampleVisitor

TQFolder

TOSampleDataReader*
TOCounter

TOSample,
TOSampleFolder

TQHistogramUtils, TOStringUtils, TQTaggable*

HWWAnalysisCode Tutorial Sessions: Running on ntuples

Addition to session 1

There was an important method missing in SVN on Tuesday
to make the TQHWWPlotter2 class accepting options.

// load the sample folder of exercise 5 (session 1)

TOSampleFolder * samples =
TQSampleFolder: :loadSampleFolder (
~hww dataMC genHisto.root:samples”);

// create an instance of the HWW plotter 2:
TOQHWWPlotter2 * pl = new TQHWWPlotter2(samples);

// create a plot with data/MC ratio, label and in log scale
TCanvas * ¢ = pl->plot(
"Cutl0 ALL/METRel", "style.showRatio=true,
labels.lumi="#sqrt{s} = 7 TeV, #scale[0.7]
{#int}L = 4.7 fb"{-1}"', style.logScale=true");

HWWAnalysisCode Tutorial Sessions: Running on ntuples

Addition to session 1

Plot: "Cut10_ALL/METRel"

> L L L L L DL L B IO B
o 108=EATLAS Private #- Data 7= SM(stay é
= _ I ww W Wzzzizy 3
¥ 107 s=7TeV,fL=4.7fb1 i O Single Top =
2 10° L H->WW-vlv B Z+jets [] Wriets .
5 = [] Signal =
= =
o 10 E
10* =
10° =
10 =
10
’
10
1072
= qgE . TTTTTTTTTTTTTTTTTTTTTTT T T
n S I
e
©
a

: l 1 11 T
B:PEEEFEHE?EE%?JEE?EEEQEE
0O 20 40 60 80 100 120 140 160 180 200
Eﬁj[GeV]

"Cutl0 ALL/METRel", "style.showRatio=true,
labels.lumi="#sqrt{s} = 7 TeV, #scale[0.7]
{#int}L 4.7 fb"{-1}', style.logScale=true");

HWWAnalysisCode Tutorial Sessions: Running on ntuples

How to set up an analysis (in general)

The first step to run an analysis using the library of the

HWWAnalysisCode is to set up the sample folder hierarchy
representing the analysis

1) create the root sample folder (an instance of
TQSampleFolder)

2) create the sub sample folders (instances of
TQSampleFolder) categorizing the samples

3) create samples (instances of TQSample) representing an

atomic category of event samples (technically a sample
taken from a single ROOT tree)

HWWAnalysisCode Tutorial Sessions: Running on ntuples

1) Create the root sample folder

Creating an empty sample folder (automatically being the
root sample fOIder): h not necessarily the same

TOSampleFolder * samples =

TOSampleFolder: :newSampleFolder (, samples”);

f

There are constraints about the names that are allowed:
» small and capital letters (a to z, A to z)

> numerals (0 to 9)

» dot (.), underscore (_)

Examples
» allowed: ,samples”, ,myFolder 123”, ,my.folder”
» not allowed: ,my folder*, ,my-folder”

HWWAnalysisCode Tutorial Sessions: Running on ntuples

2) Create the sub sample folders

Starting from the empty root sample folder, create the
sample folder hierarchy categorizing your samples, e.g.:

samples->getSampleFolder (,bkg/ttbar+”);
samples->getSampleFolder (,bkg/Zjets+");
samples->getSampleFolder (,data/period A+*”);

the ,+“ appended creates
the sample folder

The structure of the sample folder hierarchy is completely
arbitrary and can be choosen according to any analysis!

HWWAnalysisCode Tutorial Sessions: Running on ntuples

3) Create the samples

Given the sample folder hierarchy created in the previous
step, create the samples as sub elements of the sample
folders, e.qg.:

TQSample * ttbar 105200 =
new TQSample(,,105200");

samples->getSampleFolder (,bkg/ttbar*)
->addSampleFolder (ttbar 105200);

The TQSample class is a specialization of
or merging step 2) and 3) the TQSampleFolder class, that's why you
use addSampleFolder () to add a sample.

samples->addSampleFolder (
new TQSample(,105200“), ,bkg/ttbar+”);

HWWAnalysisCode Tutorial Sessions: Running on ntuples

[H=2WW=3lv specific]

Setting up the H=>WW=vlv analysis

In the default H=>*WW=lvlv analysis the sample folder

hierarchy is created from a cross section file using the
TQHWWXSecParser class infering the categorization of a
sample from a process info string in the file:

parser->readXSecFile(
"Xsection bkg.txt", samples, 1);

the new hierarchy in

the file to parset‘ the sample folder to create minimal (numerically the

maximal) sample priority

##Format

DatasetID : Xsection(pb) : K-factor : Filtering Efficiency : Mass : Sample Priority : Generator :

105921 0.520 1.0 1.0 -999 1 MCENLO gg->WpWm->eenunu
105922 0.520 1.0 1.0 -999 1 MCENLO gg->WpWm->emununu
105923 0.520 1.0 1.0 -999 1 MCENLO gg->WpWm->etaununu

HWWAnalysisCode Tutorial Sessions: Running on ntuples

ProcessInfo ##

Example 1: TOHWWXSecParser

[HSWW=bluly specific

// create an empty sample folder
TQSampleFolder * samples =
TQSampleFolder: :newSampleFolder(,samples”);

/[create an instance of the parser
TOHWWXSecParser * parser =
new TQHWWXSecParser();

/] parse the cross section file for background samples

parser->readXSecFile(
.+ +/XsectionInput/Xsection bkg v5.txt*,
samples, 1);

// print the hierarchy and some tags
samples->print(,rd*);
samples->getSample(,*/105921“)->printTags();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

10

[H=>WW=ulv specific]

Exerc. 11: Customized sample folders

Use the TQHWWXSecParser class to create two instances of
the default H=*WW=lvlv background sample folder hierarchy

in two different sub sample folders (e.g. ,at1fast“ and
,fullsim”) of one common root sample folder.

Some comments/hints:

> use ,../XsectionInput/Xsection bkg v5.txt*
as cross section input file

> use gROOT->Add (samples) ; at the end of your macro to
browse the hierarchy in the ROOT command line even after
your macro has terminated

HWWAnalysisCode Tutorial Sessions: Running on ntuples

11

The TQSample class

The TQSample class is a specialization of the TQSample-
Folder class representing a leaf of the sample folder
hierarchy. Being an ,atomic” category of event samples, it
has an association to a single ROOT TTree object (,,ntuple”)

(

105200.root

HWWTree ee

HWiWTree em

HWWTree_mm

HWWAnalysisCode Tutorial Sessions: Running on ntuples

12

continued: The TQSample class

The TQSample class introduces some additional (with
respect to the TQSampleFolder class) features and
parameters:

» the association to a TTree (,iree location®, see previous

slide): r‘ .filename:treename”

» setTreelocation(,treeLocation”)
» getTreelLocation ()

» a normalization factor being applied to every histogram
and cutflow counter (before being stored)

» setNormalisation(...)
» getNormalisation()

HWWAnalysisCode Tutorial Sessions: Running on ntuples

13

Accessing the TTree of a sample

The TQSample class governs the access to the TTree
object associated to the sample, including opening/closing

the ROOT file containing the tree. The file access is organized
by dispensing tree tokens to the user:

The first tree token request will
» TOToken * treeToken = / trigger the opening of the file

sample->getTreeToken();

TTree * tree =
(TTree*)treeToken->getContent () ;

Return the tree token when you are done:

P sample->returnTreeToken (treeToken);

I Returning the last tree token will

trigger the closing of the file

HWWAnalysisCode Tutorial Sessions: Running on ntuples

14

Example 2: TQSample class

/[create a new instance of the TQSample class
TQSample * sample = new TQSample(,mySample”);

/l set the sample‘s normalization factor (e.g. 107)

sample->setNormalisation(1E-3); I just for illustration, does

not affect this example

// set the sample’s tree location

sample->setTreeLocation(, /afs/cern.ch/work/a/*
.awalz/public/ntuples/105200.root:HWWTree ee”);

// access the tree (requesting a tree token)

TQToken * treeToken = sample->getTreeToken();
TTree * tree = (TTree*)treeToken->getContent();
tree->Scan(, lepPt0:1lepPtl”);

/ return the tree token
sample->returnTreeToken(treeToken) ;

HWWAnalysisCode Tutorial Sessions: Running on ntuples

15

Analysis ,working stack"”

The library provides a stack of classes designed to run on

samples (,,ntuples”), each using the services provided by the
classes of the levels below.

Going to higher levels, the implementation gets more specific

HWW analysis macros

TOAnalysisJdob

more specific

| | TOAnalysisSampleVisitor
implementation

TQSampleVisitor

HWWAnalysisCode Tutorial Sessions: Running on ntuples

16

The ,visitor pattern®

,Heavy computational jobs" to be performed on the sample
folder hierarchy are encapsulated in visitor classes inheriting
from the TQSampleVisitor class.

,Instead of bringing cars to the car workshop, let a service
person go around maintaining (visiting) the cars at their

homes r‘ an instance of the visitor class

P samples->visitMe(visitor); l

P samples->visitSampleFolders(visitor,
+bkg/ee, sig/ee/mhl25, data/ee”);

Examples of pre-implemented visitor classes:

» TQAnalysisSampleVisitor,
TOQHWWSampleInitializer

HWWAnalysisCode Tutorial Sessions: Running on ntuples

17

Example 3: Default visitor

The TQSampleVisitor class provides a default
implementation of a simple visitor job (listing samples)

// load the example sample folder from the external ROOT file

TOSampleFolder * samples =
TQSampleFolder: :loadSampleFolder (
.example3.root:samples”);

// run the default visitor on background sample folders
samples->visitSampleFolders (0, ,bkg/ee”);

// run the default visitor on all sample folders
samples->visitMe();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

18

The TOHWWSampleInitializer

[H=2WW=3lv specific]

The TOHWWSampleInitializer class is used to initialize
the TQSample objects (representing Monte Carlo samples)
In the sample folder hierarchy by visiting these samples.

The Initializer sets:

» the normalization factor using the predefined (integrated)
luminosity to normalize the MC to, cross section and filter
efficiency of the sample and the number of events
generated (taken from the Count histogram in the ntuple)

» the tree location using the dataset id of the sample and a
predefined file path

HWWAnalysisCode Tutorial Sessions: Running on ntuples

19

EX. 4. TOHWWSampleInitializer

[H=2WW=lv specific]

// ... get sample folder hierarchy of Example 1

// create an instance of the sample initializer
TOQHWWSampleInitializer * initializer =
new TQHWWSampleInitializer();

// set initializer parameters
initializer->setLuminosity(4712.);
initializer->setFilepath(,/afs/cern.ch/work/a/*“
,awalz/public/ntuples”);
initializer->setNEventsBin(1l);

/] run the initializer
samples->visitMe(initializer);

HWWAnalysisCode Tutorial Sessions: Running on ntuples

20

Modeling event selection cuts

Event selection cuts can be organized in a tree-like hiearchy
with the ,base cut” being the precondition for the cut under
consideration.

(Lepton charge)

In the HWWAnalysisCode event T_(

_ Lepton Pt cut)
selection cuts are represented by yy
instances of the TQCompiledCut class. _(s)

T—(MET cut)
—(Z selection)

Cut hierarchy can be printed with

P cut->print();

Cut Expression

1.
isLowPtCand == 0. && (lepPt@® > 25000. || lepPtl > 25000.)

lepID@xlepIDl < 0.

M1l > 12000.

abs(M11 - 91187.6) > 15000.
METRel > 45000.

L e—— ——SS

HWWAnalysisCode Tutorial Sessions: Running on ntuples

21

The TQCutFactory class

The TQCutFactory class is used to compile a tree of
TQCompiledCut objectes from a simple cut definition
syntax:

»p factory->addCut(,cut definition”);

» add a cut to the definition of the cut tree / optional

,<CutName: |[preConditionCut <<
cutExpression |: welightExpression}”

»p factory->compileCuts (,parameter”);

» compile the cut hierarchy and return a pointer to the
TQCompiledCut object representing the root selection
cut

HWWAnalysisCode Tutorial Sessions: Running on ntuples

22

Example 5. TQCutFactory

// create an instance of the cut factory
TQCutFactory * cf = new TQCutFactory();

// define two cuts

cf->addCut(,rootCut: nLeptons == 2");

cf->addCut(, leptonCut: rootCut <<
lepCharge(0 != lepChargel”);

// compile the cut hierarchy
TQCompiledCut * cuts = cf->compileCuts();

// print the cut hierarchy
cuts->print();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

continued: TQCutFactory

// create an instance of the cut factory
TQCutFactory * cf = new TQCutFactory();

/| define two cuts

cf->addCut(,rootCut: nLeptons == 2");
cf->addCut(,MTCut: rootCut << MT < S$MH");

// compile the cut hierarchy
TQCompiledCut * cuts =
cf->compileCuts(,mh = 125");

// print the cut hierarchy
cuts->print();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

24

continued: TQCutFactory

// create an instance of the cut factory
TQCutFactory * cf = new TQCutFactory();

/| define two cuts v

cf->addCut(,rootCut: nLeptons == 2 : weight”);
cf->addCut (,CutZvVeto: rootCut <<
{ SLEPCH!='em’ ? abs(M11-91.1876)>15 : 1 }“);

// compile the cut hierarchy
TQCompiledCut * cutsEE =

cf->compileCuts(,lepch = ‘ee’");
TQCompiledCut * cutsEM =
cf->compileCuts(,lepch = ‘em’*);

// print the cut hierarchy
cutsEE->print();
cutsEM->print();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

25

Analysis jobs (TQAnalysisJob)

The TQAnalysisJob class is a representation of a simple
analysis job to be associated to a certain selection cut

(represented by an instance of the TQCompiledCut class).

There are several pre-implemented analysis job classes
(inheriting from the TQAnalysisJob class) available:

» TQHistoMakerAnalysisJdJob < filling histograms

» TQCutflowAnalysisJob <€4— counting events

» TQScanAnalysisJob <€4—— scanning windows

» TQEventlistAnalysisJob <€4— creating event list

» TQCopyTreeAnalysisJob <€— writing small ntuples

HWWAnalysisCode Tutorial Sessions: Running on ntuples

26

Example 6: Cutflow analysis job

// get a cut hierarchy (e.g. from example 5)

// create a cutflow analysis job
TQCutflowAnalysisJob * cutflowJob =
new TQCutflowAnalysisJob();

// add the cutflow analysis job to cuts of the hiearchy
cuts->addAnalysisJob(cutflowJob, ,rootCut**);

// print the cut hierarchy
cuts->print();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

27

Example 7: Histogram analysis job

// get a cut hierarchy (e.g. from example 5)

// create a cutflow analysis job
TQHistoMakerAnalysisJob * histoJob =
new TQHistoMakerAnalysisJob();

use default ROOT syntax

// define (,book”) a histogram
histoJob->bookHistogram(
,TH1D('lepPtO‘, ‘‘, 20, 0., 200.) << ,,

. (leptPt0 : ‘leading lepton pt [GeV]')");

// add the histogram maker analysis job to cuts of the hiearchy
cuts->addAnalysisJob(histoJob, ,rootCut**");

// print the cut hierarchy
cuts->print();

HWWAnalysisCode Tutorial Sessions: Running on ntuples

28

Example 7: Histogram analysis job

expression of distribution

title of x axis

TH1D('lepPtO‘, ‘‘, 20, 0., 200.) << (leptPtO0 : ‘leading lepton pt [GeV]')

HWWAnalysisCode Tutorial Sessions: Running on ntuples

29

TQAnalysisSampleVisitor class

The TQAnalysisSampleVisitor class is an inheritor of
the TQSampleVisitor class designed to run the analysis
jobs associated to a cut hierarchy on the sample hierarchy.

Set the base (root) cut of the cut hier;\rci-
» visitor->setBaseCut (baseCut);

The jobs are executed by visiting the sample hierarchy

» samples->visitMe(visitor);

+ 105200 312'726 -
+ 105204 - : failed to get tree token

+ 117360 274
+ 117361 265

HWWAnalysisCode Tutorial Sessions: Running on ntuples

30

Summarizing default analysis tools

The analysis to be performed on samples in the sample
folder hierarchy is defined by

» a tree of selection cuts

» analysis jobs associated to the cuts

TOAnalysisSampleVisitor IS

|)
e l v = histogram job
bkg) (Lepton charge) S cutflow job
' V.
\ \ Lepton Pt cut } ' ceee histogram job

A

ttbar j \\ —(Z veto }-"j--- cutflow job
T—(MET cut } b(event list job)
—(Z selection)

HWWAnalysisCode Tutorial Sessions: Running on ntuples

31

Running a specific analysis

Many analysis requirements are met by the implementation
of the TQAnalysisSampleVisitor and the set of analysis

job classes.

However, there will be cases in which you need to implement
your own sample visitor class in order to address the
specifics of your analysis.

Define a new class (outside the library) implement at least
the method being called when the sample visitor is visiting a

sample:

P TMyVisitor::visitSample(...)

HWWAnalysisCode Tutorial Sessions: Running on ntuples
32

Example 8: A new sample visitor

// define a new class inheriting from the TQSampleVisitor class
class TMyVisitor : public TQSampleVisitor {

public:
// this is the most important method to reimplement
Int t visitSample(TQSample * sample, TString * message) {

// access the sample’s tree by getting a tree token
TQToken * treeToken = sample->getTreeToken|();

if (treeToken) {
TTree * tree = (TTree*)treeToken->getContent();

// in this place: perform your analysis and write your
// analysis results (to the folder hierarchy)

// we are done: return the tree token
sample->returnTreeToken (treeToken) ;

// display the green [OK]

return visitOK;

} else {

// the sample didn‘t dispense a tree token => compile
// an error message to be shown in the message column
*message = ,couldn’‘t access the tree”

// display the red [failed]

return visitFAILED;

}

HWWAnalysisCode Tutorial Sessions: Running on ntuples

33

zoomed in: Example 8

// access the sample’‘s tree by getting a tree token
TQToken * treeToken = sample->getTreeToken();

if (treeToken) {
TTree * tree = (TTree*)treeToken->getContent();

// in this place: perform your analysis and write your
// analysis results (to the folder hierarchy)

// we are done: return the tree token
sample->returnTreeToken (treeToken) ;

// display the green [OK]

return visitOK;

} else {

// the sample didn‘t dispense a tree token => compile
// an error message to be shown in the message column
*message = ,couldn‘t access the tree”

// display the red [failed]

return visitFAILED;

HWWAnalysisCode Tutorial Sessions: Running on ntuples

34

Exercise 12: Specific analysis

mplement a sample visitor class selecting central jets (e.q.
n| < 2.5) of every event in the sample and creating a
nistogram of the jet pt of those jets. Store the histogram in
the sample folder hierarchy.

Some comments/hints:
» use the class skeleton ,, TMySampleVisitor.cxx”

» jetn branch: ,m jet eta”, jet pt (in MeV) branch:
,m_jet pt” (both std::vector<float>)

» for simplicity: don‘t apply any event weights or event cuts
» don'‘t forget to apply the normalization factor of the sample
» use histo->SetDirectory(0); for your histogram

» use ,Run TMySampleVisitor.C* to run your code

HWWAnalysisCode Tutorial Sessions: Running on ntuples

35

Some final remarks

» The HWWAnalysisCode library contains much more
features and details than could be presented in this tutorial

» Would like to have a detailed manual and/or reference
guide (due to time constraints | wasn't able to write such
documents yet)

» Should find at least one (better two) person getting
iInvolved in the development and maintenance of the
HWWAnalysisCode (distribute expertise)

» Many ideas on potential future improvements and new
features in mind

Thanks for your attention!

HWWAnalysisCode Tutorial Sessions: Running on ntuples

36

